Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.752
Filtrar
1.
Nat Commun ; 15(1): 2866, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570482

RESUMO

Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.


Assuntos
Lesões Encefálicas , Ferimentos Perfurantes , Animais , Camundongos , Masculino , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Lesões Encefálicas/metabolismo , Córtex Cerebral/metabolismo , Ferimentos Perfurantes/complicações , Ferimentos Perfurantes/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588430

RESUMO

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Assuntos
Córtex Cerebral , Neocórtex , Camundongos , Animais , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Neurogênese/fisiologia , Interneurônios/fisiologia , Biomarcadores/metabolismo , Neurônios GABAérgicos/fisiologia
3.
Nat Commun ; 15(1): 3039, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589390

RESUMO

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Neurônios/metabolismo , Diagnóstico por Imagem , Córtex Cerebral/metabolismo , Sinalização do Cálcio/fisiologia
4.
Sci Rep ; 14(1): 7560, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555402

RESUMO

Neurodegenerative diseases, like Alzheimer's, are associated with the presence of neurofibrillary lesions formed by tau protein filaments in the cerebral cortex. While it is known that different morphologies of tau filaments characterize different neurodegenerative diseases, there are few metrics of global and local structure complexity that enable to quantify their structural diversity rigorously. In this manuscript, we employ for the first time mathematical topology and geometry to classify neurodegenerative diseases by using cryo-electron microscopy structures of tau filaments that are available in the Protein Data Bank. By employing mathematical topology metrics (Gauss linking integral, writhe and second Vassiliev measure) we achieve a consistent, but more refined classification of tauopathies, than what was previously observed through visual inspection. Our results reveal a hierarchy of classification from global to local topology and geometry characteristics. In particular, we find that tauopathies can be classified with respect to the handedness of their global conformations and the handedness of the relative orientations of their repeats. Progressive supranuclear palsy is identified as an outlier, with a more complex structure than the rest, reflected by a small, but observable knotoid structure (a diagrammatic structure representing non-trivial topology). This topological characteristic can be attributed to a pattern in the beginning of the R3 repeat that is present in all tauopathies but at different extent. Moreover, by comparing single filament to paired filament structures within tauopathies we find a consistent change in the side-chain orientations with respect to the alpha carbon atoms at the area of interaction.


Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Doença de Alzheimer/metabolismo , Microscopia Crioeletrônica , Tauopatias/metabolismo , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/patologia , Córtex Cerebral/metabolismo , Encéfalo/metabolismo
5.
Biomolecules ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540722

RESUMO

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann's area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Córtex Cerebral/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo
6.
Science ; 383(6690): 1471-1478, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547288

RESUMO

Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (Po2) dynamics under physiological conditions. Here we introduce Green enhanced Nano-lantern (GeNL), a genetically encoded bioluminescent oxygen indicator for Po2 imaging. In awake behaving mice, we uncover the existence of spontaneous, spatially defined "hypoxic pockets" and demonstrate their linkage to the abrogation of local capillary flow. Exercise reduced the burden of hypoxic pockets by 52% compared with rest. The study provides insight into cortical oxygen dynamics in awake behaving animals and concurrently establishes a tool to delineate the importance of oxygen tension in physiological processes and neurological diseases.


Assuntos
Córtex Cerebral , Circulação Cerebrovascular , Hipóxia Encefálica , Medições Luminescentes , Saturação de Oxigênio , Oxigênio , Animais , Camundongos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Oxigênio/sangue , Oxigênio/metabolismo , Pressão Parcial , Hipóxia Encefálica/sangue , Hipóxia Encefálica/diagnóstico por imagem , Hipóxia Encefálica/metabolismo , Vasodilatação , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipercapnia/sangue , Hipercapnia/diagnóstico por imagem , Hipercapnia/metabolismo
7.
Nat Methods ; 21(4): 692-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443508

RESUMO

The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.


Assuntos
Receptores Acoplados a Proteínas G , Serotonina , Humanos , Camundongos , Animais , Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Córtex Cerebral/metabolismo
8.
Sci Rep ; 14(1): 6102, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480729

RESUMO

The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.


Assuntos
Córtex Cerebral , Telencéfalo , Camundongos , Animais , Telencéfalo/metabolismo , Córtex Cerebral/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
9.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512724

RESUMO

Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.


Assuntos
Matriz Extracelular , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Matriz Extracelular/metabolismo , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo
10.
Cell Transplant ; 33: 9636897241237049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483119

RESUMO

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neuroinflamatórias , Talidomida/análogos & derivados , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
11.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38425213

RESUMO

The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.


Assuntos
Córtex Cerebral , Neurônios , Animais , Humanos , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Ventrículos Laterais/metabolismo , Primatas
12.
Synapse ; 78(2): e22289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436644

RESUMO

Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.


Assuntos
Epilepsia , Animais , Feminino , Masculino , Ratos , Tronco Encefálico/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Hipocampo/metabolismo , Pentilenotetrazol , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Fator 6 Associado a Receptor de TNF/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Receptores de AMPA/genética , Córtex Cerebral/metabolismo
13.
Neurochem Int ; 175: 105717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447759

RESUMO

OBJECTIVES: Monoacylglycerol lipase (MAGL) is a cytosolic serine hydrolase considered a potential novel drug target for the treatment of CNS disorders including epilepsy. Here we examined MAGL levels in a rat model of epilepsy. METHODS: Autoradiography has been used to validate the binding properties of the MAGL radiotracer, [3H]T-401, in the rat brain, and to explore spatial and temporal changes in binding levels in a model of temporal lobe epilepsy model using unilateral intra-hippocampal injections of kainic acid (KA) in rats. RESULTS: Specific and saturable binding of [3H]T-401 was detected in both cortical grey and subcortical white matter. Saturation experiments revealed a KD in the range between 15 nM and 17 nM, and full saturation was achieved at concentrations around 30 nM. The binding could be completely blocked with the cold ligand (Ki 44.2 nM) and at higher affinity (Ki 1.27 nM) with another structurally different MAGL inhibitor, ABD 1970. Bilateral reduction in [3H]T-401 binding was observed in the cerebral cortex and the hippocampus few days after status epilepticus that further declined to a level of around 30% compared to the control. No change in binding was observed in either the hypothalamus nor the white matter at any time point. Direct comparison to [3H]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A), another protein localized in the pre-synapse, revealed that while binding to MAGL remained low in the chronic phase, SV2A was increased significantly in some cortical areas. SIGNIFICANCE: These data show that MAGL is reduced in the cerebral cortex and hippocampus in a chronic epilepsy model and indicate that MAGL inhibitors may further reduce MAGL activity in the treatment resistant epilepsy patient.


Assuntos
Epilepsia , Estado Epiléptico , Humanos , Ratos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Monoacilglicerol Lipases , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Epilepsia/metabolismo , Inibidores Enzimáticos/farmacologia
14.
Neuropeptides ; 104: 102411, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335799

RESUMO

Brain-derived neurotrophic factor (BDNF), one of the neurotrophins, and its specific receptor TrkB, are abundantly distributed in the central nervous system (CNS) and have a variety of biological effects, such as neural survival, neurite elongation, neural differentiation, and enhancing synaptic functions. Currently, there are two TrkB subtypes: full-length TrkB (TrkB-FL), which has a tyrosine kinase in the intracellular domain, and TrkB-T1, which is a tyrosine kinase-deficient form. While TrkB-FL is a typical tyrosine kinase receptor, TrkB-T1 is a main form expressed in the CNS of adult mammals, but its function is unknown. In this study, we performed fluorescent staining of the cerebral cortex of adult mice, by using TrkB-T1 antiserum and various antibodies of marker molecules for neurons and glial cells. We found that TrkB-T1 was expressed not only in neurons but also in astrocytes. In contrast, little expression of TrkB-T1 was found in oligodendrocytes and microglia. TrkB-T1 was expressed in almost all of the cells expressing TrkB-FL, indicating the direct interaction between TrkB subtypes. These findings suggest that a part of various functions of BDNF-TrkB signaling might be due to the interaction and cellular localization of TrkB subtypes in the cerebral cortex.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Neurônios , Receptor trkB , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Neuritos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo
15.
Aging Cell ; 23(4): e14087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332648

RESUMO

Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at ß-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Anfetamina/farmacologia , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Espinhas Dendríticas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Ratos Endogâmicos F344 , Ácido Glutâmico , Cognição
16.
Dev Growth Differ ; 66(3): 219-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378191

RESUMO

The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.


Assuntos
Redes Reguladoras de Genes , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Telencéfalo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
17.
Nature ; 627(8002): 149-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418876

RESUMO

The glymphatic movement of fluid through the brain removes metabolic waste1-4. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease5-8. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease. Influx of cerebrospinal fluid was associated with increased aquaporin-4 polarization along astrocytic endfeet and dilated meningeal lymphatic vessels. Inhibiting glymphatic clearance abolished the removal of amyloid by multisensory 40 Hz stimulation. Using chemogenetic manipulation and a genetically encoded sensor for neuropeptide signalling, we found that vasoactive intestinal peptide interneurons facilitate glymphatic clearance by regulating arterial pulsatility. Our findings establish novel mechanisms that recruit the glymphatic system to remove brain amyloid.


Assuntos
Doença de Alzheimer , Amiloide , Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Ritmo Gama , Sistema Glinfático , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Amiloide/metabolismo , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Sistema Glinfático/fisiologia , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Estimulação Elétrica
18.
Neuroscience ; 543: 90-100, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417540

RESUMO

Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1ß (IL-1ß) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1ß mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1ß mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1ß protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1ß production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Camundongos , Ratos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Anquirinas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Córtex Cerebral/metabolismo , Transtornos de Enxaqueca/metabolismo , RNA Mensageiro/metabolismo
19.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38383722

RESUMO

In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the "inside-out" pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning ("outside-in"). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.


Assuntos
Moléculas de Adesão Celular Neuronais , Neurônios , Humanos , Animais , Masculino , Feminino , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/fisiologia , Córtex Cerebral/metabolismo , Fenótipo , Proteínas da Matriz Extracelular/genética , Movimento Celular/fisiologia , Mamíferos/metabolismo
20.
Neuromolecular Med ; 26(1): 2, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393429

RESUMO

In this study the subcellular modifications undergone by cerebral cortex mitochondrial metabolism in chronic hypertension during aging were evaluated. The catalytic properties of regulatory energy-linked enzymes of Tricarboxylic Acid Cycle (TCA), Electron Transport Chain (ETC) and glutamate metabolism were assayed on non-synaptic mitochondria (FM, located in post-synaptic compartment) and on intra-synaptic mitochondria of pre-synaptic compartment, furtherly divided in "light" (LM) and "heavy" (HM) mitochondria, purified form cerebral cortex of normotensive Wistar Kyoto Rats (WKY) versus Spontaneously Hypertensive Rats (SHR) at 6, 12 and 18 months. During physiological aging, the metabolic machinery was differently expressed in pre- and post-synaptic compartments: LM and above all HM were more affected by aging, displaying lower ETC activities. In SHR at 6 months, FM and LM showed an uncoupling between TCA and ETC, likely as initial adaptive response to hypertension. During pathological aging, HM were particularly affected at 12 months in SHR, as if the adaptive modifications in FM and LM at 6 months granted a mitochondrial functional balance, while at 18 months all the neuronal mitochondria displayed decreased metabolic fluxes versus WKY. This study describes the effects of chronic hypertension on cerebral mitochondrial energy metabolism during aging through functional proteomics of enzymes at subcellular levels, i.e. in neuronal soma and synapses. In addition, this represents the starting point to envisage an experimental physiopathological model which could be useful also for pharmacological studies, to assess drug actions during the development of age-related pathologies that could coexist and/or are provoked by chronic hypertension.


Assuntos
Metabolismo Energético , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Córtex Cerebral/metabolismo , Envelhecimento/metabolismo , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...